Building Pareto Frontiers for Ecosystem Services Tradeoff Analysis in Forest Management Planning Integer Programs

Author:

Marques SuseteORCID,Bushenkov VladimirORCID,Lotov AlexanderORCID,G. Borges JoséORCID

Abstract

Decision making in modern forest management planning is challenged by the need to recognize multiple ecosystem services and to address the preferences and goals of stakeholders. This research presents an innovative a posteriori preference modeling and multi-objective integer optimization (MOIP) approach encompassing integer programming models and a new technique for generation and interactive visualization of the Pareto frontier. Due to the complexity and size of our management problems, a decomposition approach was used to build the Pareto frontier of the general problem using the Pareto frontiers of its sub-problems. The emphasis was on the approximation of convex Edgeworth–Pareto hulls (EPHs) for the sub-problems by systems of linear inequalities; the generation of Edgeworth–Pareto hulls by the convex approximation of the Pareto frontier evinced a very small discrepancy from the real integer programming solutions. The results thus highlight the possibility of generating the Pareto frontiers of large multi-objective integer problems using our approach. This research innovated the generation of Pareto frontier methods using integer programming in order to address multiple objectives, locational specificity requirements and product even-flow constraints in landscape-level management planning problems. This may contribute to enhancing the analysis of tradeoffs between ecosystem services in large-scale problems and help forest managers address effectively the demand for forest products while sustaining the provision of services in participatory management planning processes.

Funder

Fundação para a Ciência e a Tecnologia

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3