Enhancing Damage Detection in 2D Concrete Plates: A Comprehensive Study on Interpolation Methods and Parameters

Author:

Diab Alaa1ORCID,Nestorović Tamara1ORCID

Affiliation:

1. Mechanics of Adaptive Systems, Institute for Computational Engineering, Faculty of Civil and Environmental Engineering, Ruhr University Bochum, 44801 Bochum, Germany

Abstract

In an era marked by increasing demands for stability and durability in construction, the importance of damage detection in concrete structures cannot be overstated. As these structures underpin the safety and longevity of vital assets, this paper embarks on a comprehensive exploration of methodologies to enhance precision and reliability in 2D concrete plate damage detection. By focusing on the interpolation of damage index values and leveraging the insights gained from energy loss analysis and the characterization of the time of arrival of signals, we address the pressing need for improved non-destructive damage detection techniques. Our study encompasses a range of simulation attempts, each involving various interpolation parameters, and systematically evaluates their performance. The culmination of this research identifies the most effective combination of techniques and parameters, leading to the best results in damage detection. This multidimensional investigation promises to provide valuable contributions to the field of structural health monitoring, benefiting both researchers and practitioners engaged in the evaluation of concrete structures.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3