Stability Analysis and Delay Compensation for Space Instable Target Simulator

Author:

Bai Xinlin123ORCID,Li Xiwen1ORCID,Zhao Zhen4,Xu Zhigang235,Lu Han235,Liu Mingyang23

Affiliation:

1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

3. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China

4. Aerospace System Engineering Shanghai, Shanghai 201109, China

5. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The space instable target simulator (SITS) is a vital actuator for ground verification of on-orbital capture technology, the motion performance of which directly affects simulation credibility. Different delays reduce the stability of SITS and ultimately lead to its divergence. In order to achieve high-fidelity simulation, the impacts of force measurement delay, the discrete control cycle, and simulator response delay on stability are analyzed first. Then, the dynamic equation and transfer function identification model of the hybrid simulator is constructed, and the necessary and sufficient conditions of its stability and convergence are obtained using the Routh criterion. After that, a novel switching compensator with variable gain is proposed to reduce the superimposed effects of the three delays, the compensation principle diagram of which was built, and its mathematical model including the energy observer and nonlinear tracking differentiator is also established. Finally, three sets of numerical simulations were conducted to validate the correctness of the stability analysis and effectiveness of the proposed compensation method. The simulation results show that all three types of delays can cause SITS to lose stability under critical stable motion states, and the delay in force measurement has the greatest impact, followed by the influence of the control cycle. Compared with the force applied to the simulated target, the velocity, and the recovery coefficient of the space instable target using fixed gain and linear gain compensation, the proposed compensator has significantly better performance.

Funder

State Administration of Science, Technology and Industry for National Defence, PRC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3