Increasing River Temperature Shifts Impact the Yangtze Ecosystem: Evidence from the Endangered Chinese Sturgeon

Author:

Zhang HuiORCID,Kang Myounghee,Wu Jinming,Wang Chengyou,Li Junyi,Du Hao,Yang Haile,Wei Qiwei

Abstract

The Yangtze River has the third greatest water flow and is one of the most human-influenced rivers in the world. Since 1950, this river system has experienced drastic human interventions, leading to various environmental changes, including water temperature. In this study, based on observations during the past sixty years, we found that the seasonal temperature regime has been altered, both temporally (1–5 °C variation) and spatially (>626 km distance). Temperature shifts not only delay the timing of fish spawning directly, but also lead to degeneration in gonad development. Temperature regime alterations have delayed the suitable spawning temperature window by approximately 29 days over a decade (2003–2016). It confirmed that a period of lower temperature, higher cumulative temperature, and relatively higher temperature differences promoted the maturation of potential spawners based on the correlation analysis (p < 0.05). Also, thermal alterations were highly correlated with reservoir capacity upstream (R2 = 0.866). On-going cascade dam construction and global warming will lead to further temperature shifts. Currently, rigorous protection measures on the breeding population of the Chinese sturgeon and its critical habitats is urgently needed to prevent the crisis of the species extinction. Increasing river thermal shifts not only threaten the Chinese sturgeon but also affect the entire Yangtze aquatic ecosystem.

Funder

National Natural Science Foundation of China

Project of Yangtze Fisheries Resources and Environment Investigation from the MARA, P. R. China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3