Role of Non-Covalent Interactions in Carbonic Anhydrase I—Topiramate Complex Based on QM/MM Approach

Author:

Wojtkowiak Kamil1ORCID,Jezierska Aneta1ORCID

Affiliation:

1. Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland

Abstract

Carbonic anhydrase (CA) I with a Topiramate (TPM) complex was investigated on the basis of a Quantum Mechanics/Molecular Mechanics (QM/MM) approach. The QM part was treated using Density Functional Theory (DFT) while the MM was simulated using Amberff14SB and GAFF force fields. In addition, the TIP3P model was applied to reproduce the polar environment influence on the studied complex. Next, three snapshots (after 5 ps, 10 ps, and 15 ps of the simulation time) were taken from the obtained trajectory to provide an insight into the non-covalent interactions present between the ligand and binding pocket of the protein. Our special attention was devoted to the binding site rearrangement, which is known in the literature concerning the complex. This part of the computations was performed using ωB97X functional with Grimme D3 dispersion corrections as well as a Becke–Johnson damping function (D3-BJ). Two basis sets were applied: def2-SVP (for larger models) and def2-TZVPD (for smaller models), respectively. In order to detect and describe non-covalent interactions between amino acids of the binding pocket and the ligand, Independent Gradient Model based on Hirshfeld partitioning (IGMH), Interaction Region Indicator (IRI), Quantum Theory of Atoms in Molecules (QTAIM) and Natural Bond Orbitals (NBO) methods were employed. Finally, Symmetry-Adapted Perturbation Theory (SAPT) was applied for energy decomposition between the ligand and protein. It was found that during the simulation time, the ligand position in the binding site was preserved. Nonetheless, amino acids interacting with TPM were exchanging during the simulation, thus showing the binding site reorganization. The energy partitioning revealed that dispersion and electrostatics are decisive factors that are responsible for the complex stability.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3