The Evolution and Outcomes of a Collaborative Testbed for Predicting Coastal Threats

Author:

Nichols Charles Reid,Wright Lynn Donelson

Abstract

Beginning in 2003, the Southeastern Universities Research Association (SURA) enabled an open-access network of distributed sensors and linked computer models through the SURA Coastal Ocean Observing and Predicting (SCOOP) program. The goal was to support collaborations among universities, government, and industry to advance integrated observation and modeling systems. SCOOP improved the path to operational real-time data-guided predictions and forecasts of coastal ocean processes. This was critical to the maritime infrastructure of the U.S. and to the well-being of coastal communities. SCOOP integrated and expanded observations from the Gulf of Mexico, the South Atlantic Bight, the Middle Atlantic Bight, and the Chesapeake Bay. From these successes, a Coastal and Ocean Modeling Testbed (COMT) evolved with National Oceanic and Atmospheric Administration (NOAA) funding via the Integrated Ocean Observing System (IOOS) to facilitate the transition of key models from research to operations. Since 2010, COMT has been a conduit between the research community and the federal government for sharing and improving models and software tools. SCOOP and COMT have been based on strong partnerships among universities and U.S. agencies that have missions in ocean and coastal environmental prediction. During SURA’s COMT project, which ended September 2018, significant progress was made in evaluating the performance of models that are progressively becoming operational. COMT successes are ongoing.

Funder

National Oceanic and Atmospheric Administration

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference65 articles.

1. Coastal Ocean Observing Systems;Liu,2015

2. Tomorrow’s Coasts: Complex and Impermanent, Coastal Research Library;Wright,2019

3. Coastal and Ocean Modeling Testbed Applications;Nichols,2015

4. Trans-Disciplinary Collaboration to Enhance Coastal Resilience: Envisioning a National Community Modeling Initiative;Wright,2016

5. User-based skill assessment techniques for operational hydrodynamic forecast systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3