Potential of Biosurfactants’ Production on Degrading Heavy Oil by Bacterial Consortia Obtained from Tsunami-Induced Oil-Spilled Beach Areas in Miyagi, Japan

Author:

Primeia Sandia,Inoue Chihiro,Chien Mei-FangORCID

Abstract

Bioremediation is one of the promising environment-friendly approaches to eliminate oil contamination. However, heavy oil is known to degrade slowly due to its hydrophobicity. Therefore, microorganisms capable of producing biosurfactants are gaining substantial interest because of their potential to alter hydrocarbon properties and thereby speed up the degradation process. In this study, six bacterial consortia were obtained from the oil-spilled beach areas in Miyagi, Japan, and all of which exhibited high potential in degrading heavy oil measured by gas chromatography with flame ionization detector (GC-FID). The polymerase chain reaction—denaturing gradient gel electrophoresis (PCR-DGGE) and next-generation sequencing (NGS) revealed that the diverse microbial community in each consortium changed with subculture and became stable with a few effective microorganisms after 15 generations. The total petroleum hydrocarbons (TPH) degradation ability of the consortia obtained from a former gas station (C1: 81%) and oil refinery company (C6: 79%) was higher than that of the consortia obtained from wastewater treatment plant (WWTP) (C3: 67%, and C5: 73%), indicating that bacteria present in C1 and C6 were historically exposed to petroleum hydrocarbons. Moreover, it was intriguing that the consortium C4, also obtained from WWTP, exhibited high TPH degradation ability (77%). The NGS results revealed that two bacteria, Achromobacter sp. and Ochrobactrum sp., occupied more than 99% of the consortium C4, while no Pseudomonas sp. was found in C4, though this bacterium was observed in other consortia and is also known to be a potential candidate for TPH degradation as reported by previous studies. In addition, the consortium C4 showed high biosurfactant-producing ability among the studied consortia. To date, no study has reported the TPH degradation by the combination of Achromobacter sp. and Ochrobactrum sp.; therefore, the consortium C4 provided an excellent opportunity to study the interaction of and biosurfactant production by these two bacteria during TPH degradation.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3