Analysis of Removing Barnacles Attached on Rough Substrate with Cleaning Robot

Author:

Li Chao,Wang GangORCID,Chen Kaiyun,Jia Peng,Wang Liquan,Wang Xiangyu,Yun Feihong

Abstract

In this paper, a cleaning robot is designed to remove the marine fouling attached to a marine steel pile. In the following study, in order to analyse the process of cleaning marine fouling attached to a rough substrate, the barnacle is taken as a typical case in order to study the horizontal cutting force in the scarping process for removing barnacles on a rough substrate. The adhesion model of the barnacle was established on a rough rigid substrate. Considering both right angle cutting theory and the Peel Zone method, a scraping means and horizontal cutting force model for rough surface cleaning are proposed for the study of the surface cleaning of steel piles. In order to make the model more accurate, the finite element method is used to analyze and compare its errors. Through comparative analysis, it is known that the relative average errors about the cutting force in the horizontal direction are less than 15%. The analysis shows that the blade rake angle and rough substrate have a great influence on the horizontal cutting force. It can be concluded that the cutting force needed to clean the barnacle attached to the surface decreases correspondingly as the rake angle of the blade increases; and the rougher the substrate is, the greater the horizontal cutting force required. It is recommended to use 60° for blade rake angle. We can use the model to predict the horizontal cutting force and blade rake angle in the design of a cleaning robot.

Funder

National Key Research and Development Project

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3