Numerical Study on Protective Measures for a Skid-Mounted Hydrogen Refueling Station

Author:

Zhao ZeyingORCID,Liu MinORCID,Xiao Guoping,Cui Tiancheng,Ba Qingxin,Li XuefangORCID

Abstract

Hydrogen refueling stations are one of the key infrastructure components for the hydrogen-fueled economy. Skid-mounted hydrogen refueling stations (SHRSs) can be more easily commercialized due to their smaller footprints and lower costs compared to stationary hydrogen refueling stations. The present work modeled hydrogen explosions in a skid-mounted hydrogen refueling station to predict the overpressures for hydrogen-air mixtures and investigate the protective effects for different explosion vent layouts and protective wall distances. The results show that the explosive vents with the same vent area have similar overpressure reduction effects. The layout of the explosion vent affects the flame shape. Explosion venting can effectively reduce the inside maximum overpressure by 61.8%. The protective walls can reduce the overpressures, but the protective walls should not be too close to the SHRS because high overpressures are generated inside the walls due to the confined shock waves. The protective wall with a distance of 6 m can effectively protect the surrounding people and avoid the secondary overpressure damage to the container.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences “Transformational technologies for clean energy and demonstration”

Shanghai Sailing Program

Technology Project of State Grid Zhejiang Electric Power Company, LTD. “Research on risk identification and safety protection technology of electric-hydrogen coupling system”

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3