Research of Turbine Tower Optimization Based on Criterion Method

Author:

Li Dan,Bao Hongbing,Zhao Ning

Abstract

Tower cost makes up an important part in the whole wind turbine construction especially for offshore wind farms. The main method to reduce tower cost is to reduce tower weight by optimum design. This paper proposes a two-level optimization criterion method for the optimal design of steel conical tower considering different structural reliability and uncertainty, along with the discreteness of design variables such as tower thickness and bolt type. In the first level, the tower shell geometry can be obtained by section design method; in the second level, bolted connections and flanges are designed based on the results of the first level. Then, summarized analysis and iterative calculation is performed to obtain optimum tower design with constant strength and rigidness. This method will play an important role in offshore customized turbine design.

Funder

National Key R&D Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference26 articles.

1. Wind energy research: State-of-the-art and future research directions;Willis;Renew. Energy,2018

2. Development of wind power industry in China: A comprehensive assessment;Dai;Renew. Sustain. Energy Rev.,2018

3. Study on China’s wind power development path—Based on the target for 2030;Lu;Renew Sustain. Energy,2015

4. Selection of an optimal lattice wind turbine tower for a seismic region based on the cost of energy;Gencturk;J. Civ. Eng.,2014

5. Loads Analysis and Weight Optimization of 5MW Wind Turbine Lattice Tower;Ding;J. Innov. Soc. Sci. Res.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3