Computational Modeling of a Small-Scale, Solar Concentrating Device Based on a Fresnel-Lens Collector and a Flat Plate Receiver with Cylindrical Channels

Author:

Vouros Alexandros,Mathioulakis Emmanouil,Papanicolaou EliasORCID,Belessiotis Vassilis

Abstract

The energy efficiency of a small-scale solar concentrating thermal device is investigated, based on Monte-Carlo Ray-Tracing (MCRT) and Computational Fluid Dynamics (CFD) modeling. The device consists of a Fresnel lens collector—engraved on a 1 m rectangular plate—and a 10 cm sized plate receiver, with drilled cylindrical channels with a diameter of 10 mm. Inlet velocities and heat transfer fluid (HTF) temperatures lie within the range of 0.25–1 m/s and 100–200 °C, respectively. The configurations examined involve the utilization of a selective coating on the absorbing surface of the receiver, increasing the channel diameter to 15 mm and the receiver size to 20 cm, and insertion of a glass envelope in front of the absorbing surface. Energy efficiency increases with increasing fluid velocity up to 80%, a level beyond which no further improvement is observed. The coating contributes to a reduction in heat losses; it brings substantial benefits for the lower velocities examined. The increase in channels diameter also contributes to an increase in the energy efficiency, while the increase in receiver dimensions leads to the opposite effect. The glass cover does not improve the performance of the collector, due to substantial optical losses.

Funder

General Secretariat for Research and Innovation of Greece

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3