Numerical Investigation of the Effect of Surface Wettability and Rotation on Condensation Heat Transfer in a Sludge Dryer Vertical Paddle

Author:

Liu WeiORCID,Gui Miao,Zha Yudong,Li Zengyao

Abstract

In this paper, the applicability of advanced heat transfer enhancement technology to a paddle dryer was discussed. A computational fluid dynamics (CFD) method was used to simulate condensation heat transfer on the inner surface of a dryer paddle. The effect of surface wettability and rotation on condensation heat transfer and droplet behavior was studied. The results showed that the present CFD model could properly simulate the condensation process on a vertical surface. With a decrease in the contact angle, the filmwise condensation turned into a dropwise condensation, which resulted in a significant increase in heat transfer coefficient and provided an approximately 5% increase in evaporation rate for the paddle dryer by changing the wettability of the inner surface of the paddle. Additionally, with a change in rotational angular velocity, heat transfer performance was almost unchanged under the filmwise condensation condition. However, rotational motion might cause a decrease in wall temperature and the equivalent evaporation rate under the dropwise condensation condition. Only a 2.4% increase in the equivalent evaporation rate was found in dropwise condensation with rotation, which indicated that changing the wettability inside the paddle could not be an effective means to enhance the heat transfer and drying efficiency of a rotating paddle dryer.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference26 articles.

1. Method for Thermal Design of Paddle Dryers: Application to Municipal Sewage Sludge;Arlabosse;Dry. Technol.,2004

2. The State of the Art of Sludge Drying in Japan;Imoto;Dry. Technol.,1993

3. Yamahata, Y., Izawa, H., and Hasama, K. (1984). Drying ’85, Springer.

4. Modeling of a Continuous Sewage Sludge Paddle Dryer by Coupling Markov Chains with Penetration Theory;Sauceau;Appl. Math. Model.,2016

5. Characterisation of Residence Time Distribution in a Continuous Paddle Dryer;Charlou;J. Residuals Sci. Technol.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3