Research on Model Calibration Method of Chiller Plants Based on Error Reverse Correction with Limited Data

Author:

Zhen Cheng1ORCID,Niu Jide12ORCID,Tian Zhe12

Affiliation:

1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China

2. Tianjin Key Laboratory of Building Environment and Energy, Tianjin 300072, China

Abstract

Model-based optimization is an important means by which to analyze the energy-saving potential of chiller plants. To obtain reliable energy-saving results, model calibration is essential, which strongly depends on operating data. However, sufficient data cannot always be satisfied in reality. To improve the prediction accuracy of the model with limited data, a model calibration method based on error reverse correction was investigated. A traditional optimization-based calibration method was first used for preliminary model calibration to obtain simulation data and simulation errors. Then, the sources of the simulation errors were analyzed to determine the distribution characteristics of the corresponding operating conditions of the model. Finally, the performance of the model was reversely corrected by adding a correction term to the original model. The proposed calibration method was tested on a chiller plant in Xiamen, China. The results showed that the proposed calibration method improved prediction accuracy by 2.61% (the coefficient of variation of the root mean square error (CV (RMSE)) was reduced from 3.96% to 1.35%) compared to the traditional method. The maximum mean bias error (MBE) for monthly chiller energy consumption was 2.66% with the proposed calibration method, while it was 10.42% with the traditional method. Overall, in scenarios with limited data, the proposed calibration method can effectively improve the accuracy of simulation results.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3