Design and Experimental Investigation of a Self-Powered Fan Based on a Thermoelectric System

Author:

Gao Huaibin,Liu Xiaojiang,Zhang Chuanwei,Ma Yu,Li Hongjun,Huang Guanghong

Abstract

Providing electricity for isolated areas or emergencies (snowstorms, earthquakes, hurricanes, etc.) is an important challenge. In this study, a prototype of a self-powered fan based on a thermoelectric system was built to enhance the heat dissipation of the thermoelectric generator (TEG) systems using household stoves as heat sources. To improve output performance of the system, a heat collector consisting of a heat-conducting flat plate and a heat sink with fan cooling was designed to integrate several thermoelectric modules (TEM). The effects of the fan operating conditions (airflow velocity), number of thermoelectric modules, electrical connection mode under different heat flux among the performance of the TEG system are studied. The data obtained showed a higher heat flux and lower flow velocity are required to realize self-sustained cooling of the system. The maximum electric power is more sensitive to the heat flux than the fan operation conditions. It is also observed that more modules provide a higher power output but lower efficiency. The maximum power of four modules in series is larger than that in parallel, and the difference between them increases with increasing heat flux of the heat collector. In the case of self-sufficiency: the maximum output power and maximum net power with four thermoelectric modules are 10.92 W and 5.26 W, respectively, at a heat flux of 30,000 W/m2. Additionally, the maximum conversion efficiency of 1.8% is achieved for two modules at a heat flux of 14,000 W/m2, providing an effective strategy for the installation of TEMs and cooling fans in TEG.

Funder

the Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province of China

Innovative talents cultivate program of Shaanxi

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3