Tracking Design of an Uncertain Autonomous Underwater Vehicle with Input Saturations by Adaptive Regression Matrix-Based Fixed-Time Control

Author:

Wu Hsiu-MingORCID

Abstract

In this study, a simplified model of an autonomous underwater vehicle (AUV) with input saturation based on kinematic and dynamic equations was built. Subsequently, a simplified model of the AUV was used to represent its main dynamic features. In terms of trajectory tracking, only the system’s structure (i.e., the regression matrix, which is flexible and non-unique) from the nominal model of the transformed system was required to design the proposed adaptive regression matrix-based fixed-time controller (ARM-FTC). A nonlinear auxiliary sliding surface was contained in the control design to shape the system’s frequency response. When the operating point was in the neighborhood of the zero auxiliary sliding surface, nonlinear filtering gains were increased to accelerate its tracking ability. Furthermore, the skew-symmetric property condition of the time-derivative of the inertia matrix and the Coriolis and centrifugal force matrices was not necessitated for the controller design. Under an appropriate condition for lumped uncertainties, the fixed-time convergence of the auxiliary sliding surface and the corresponding tracking error is guaranteed to go to zero by the Lyapunov stability theory. Finally, a comparative study was conducted through simulations for the AUV with external disturbance and input saturation among the known parameters, learning parameters reflecting a regression matrix, and another asymptotical robust tracking control scheme. The results validate the fast tracking ability of a desired time-varying trajectory of the proposed control scheme.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3