A Comprehensive Evaluation of Five Evapotranspiration Datasets Based on Ground and GRACE Satellite Observations: Implications for Improvement of Evapotranspiration Retrieval Algorithm

Author:

Chao Lijun,Zhang KeORCID,Wang Jingfeng,Feng Jin,Zhang Mengjie

Abstract

Evapotranspiration (ET) is a vital part of the hydrological cycle and the water–energy balance. To explore the characteristics of five typical remote sensing evapotranspiration datasets and provide guidance for algorithm development, we used reconstructed evapotranspiration (Recon) data based on ground and GRACE satellite observations as a benchmark and evaluated five remote sensing datasets for 592 watersheds across the continental United States. The Global Land Evaporation Amsterdam Model (GLEAM) dataset (with bias and RMSE values of 23.18 mm/year and 106.10 mm/year, respectively), process-based land surface evapotranspiration/heat flux (P-LSH) dataset (bias = 22.94 mm/year and RMSE = 114.44 mm/year) and the Penman–Monteith–Leuning (PML) algorithm generated ET dataset (bias = −17.73 mm/year and RMSE = 108.97 mm/year) showed the better performance on a yearly scale, followed by the model tree ensemble (MTE) dataset (bias = 99.45 mm/year and RMSE = 141.32 mm/year) and the moderate-resolution imaging spectroradiometer (MODIS) dataset (bias = −106.71 mm/year and RMSE = 158.90 mm/year). The P-LSH dataset outperformed the other four ET datasets on a seasonal scale, especially from March to August. Both PML and MTE showed better overall accuracy and could accurately capture the spatial variability of evapotranspiration in arid regions. The P-LSH and GLEAM products were consistent with the Recon data in middle-value section. MODIS and MTE had larger bias and RMSE values on a yearly scale, whereby the MODIS and MTE datasets tended to underestimate and overestimate ET values in all the sections, respectively. In the future, the aim should be to reduce bias in the MODIS and MTE algorithms and further improve seasonality of the ET estimation in the GLEAM algorithm, while the estimation accuracy of the P-LSH and MODIS algorithms should be improved in arid regions. Our analysis suggests that combining artificial intelligence algorithms or data-driven algorithms and physical process algorithms will further improve the accuracy of ET estimation algorithms and the quality of ET datasets, as well as enhancing their capacity to be applied in different climate regions.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3