Forest Restoration Monitoring Protocol with a Low-Cost Remotely Piloted Aircraft: Lessons Learned from a Case Study in the Brazilian Atlantic Forest

Author:

Albuquerque Rafael WalterORCID,Ferreira Manuel EduardoORCID,Olsen Søren IngvorORCID,Tymus Julio Ricardo CaetanoORCID,Balieiro Cintia PalhetaORCID,Mansur Hendrik,Moura Ciro José RibeiroORCID,Costa João Vitor SilvaORCID,Branco Maurício Ruiz Castello,Grohmann Carlos HenriqueORCID

Abstract

Traditional forest restoration (FR) monitoring methods employ spreadsheets and photos taken at the ground level. Since remotely piloted aircraft (RPA) generate a panoramic high resolution and georeferenced view of the entire area of interest, this technology has high potential to improve the traditional FR monitoring methods. This study evaluates how low-cost RPA data may contribute to FR monitoring of the Brazilian Atlantic Forest by the automatic remote measurement of Tree Density, Tree Height, Vegetation Cover (area covered by trees), and Grass Infestation. The point cloud data was processed to map the Tree Density, Tree Height, and Vegetation Cover parameters. The orthomosaic was used for a Random Forest classification that considered trees and grasses as a single land cover class. The Grass Infestation parameter was mapped by the difference between this land cover class (which considered trees and grasses) and the Vegetation Cover results (obtained by the point cloud data processing). Tree Density, Vegetation Cover, and Grass Infestation parameters presented F_scores of 0.92, 0.85, and 0.64, respectively. Tree Height accuracy was indicated by the Error Percentage considering the traditional fieldwork and the RPA results. The Error Percentage was equal to 0.13 and was considered accurate because it estimated a 13% shorter height for trees that averaged 1.93 m tall. Thus, this study showed that the FR structural parameters were accurately measured by the low-cost RPA, a technology that contributes to FR monitoring. Despite accurately measuring the structural parameters, this study reinforced the challenge of measuring the Biodiversity parameter via remote sensing because the classification of tree species was not possible. After all, the Brazilian Atlantic Forest is a biodiversity hotspot, and thus different species have similar spectral responses in the visible spectrum and similar geometric forms. Therefore, until improved automatic classification methods become available for tree species, traditional fieldwork remains necessary for a complete FR monitoring diagnostic.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference61 articles.

1. Unmanned Aerial Vehicles

2. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review

3. Monitoring Protocol for Forest Restoration Programs & Projectshttps://www.researchgate.net/publication/304073085_Pacto_pela_restauracao_da_Mata_Atlantica_-_Protocolo_de_monitoramento_para_programas_e_projetos_de_restauracao_florestal

4. Protocol for Monitoring Tropical Forest Restoration

5. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3