Detection of Tip-Burn Stress on Lettuce Grown in an Indoor Environment Using Deep Learning Algorithms

Author:

Hamidon Munirah HayatiORCID,Ahamed Tofael

Abstract

Lettuce grown in indoor farms under fully artificial light is susceptible to a physiological disorder known as tip-burn. A vital factor that controls plant growth in indoor farms is the ability to adjust the growing environment to promote faster crop growth. However, this rapid growth process exacerbates the tip-burn problem, especially for lettuce. This paper presents an automated detection of tip-burn lettuce grown indoors using a deep-learning algorithm based on a one-stage object detector. The tip-burn lettuce images were captured under various light and indoor background conditions (under white, red, and blue LEDs). After augmentation, a total of 2333 images were generated and used for training using three different one-stage detectors, namely, CenterNet, YOLOv4, and YOLOv5. In the training dataset, all the models exhibited a mean average precision (mAP) greater than 80% except for YOLOv4. The most accurate model for detecting tip-burns was YOLOv5, which had the highest mAP of 82.8%. The performance of the trained models was also evaluated on the images taken under different indoor farm light settings, including white, red, and blue LEDs. Again, YOLOv5 was significantly better than CenterNet and YOLOv4. Therefore, detecting tip-burn on lettuce grown in indoor farms under different lighting conditions can be recognized by using deep-learning algorithms with a reliable overall accuracy. Early detection of tip-burn can help growers readjust the lighting and controlled environment parameters to increase the freshness of lettuce grown in plant factories.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3