Automatic Measurement of External Thread at the End of Sucker Rod Based on Machine Vision

Author:

Li Xianyou,Wang Shun,Xu KeORCID

Abstract

Aiming at the low efficiency of manual measurement of threads and the lack of practicability in machine vision measurement before, online size measurement of threads at the end of sucker rods based on machine vision was studied. A robotic arm is used to carry an optical device to achieve high-quality image acquisition of threads. Based on the prior knowledge of the thread profile angle, the directional edge detection operator is customized to achieve the accurate detection of the left and right edges of the thread. Noise filtering, sorting, and left and right edge-matching algorithms based on connected domains are developed to eliminate the interference effects of electrostatic dust and oil pollution in online measurement, and the dimension of thread profile angles, pitches, major diameters, and minor diameters can be precisely calculated. The experimental results show that the screw thread parameter measurement time is about 0.13 s; the maximum and minimum average errors of the thread angles are 0.011° and 0.632°, respectively; and the total average deviation is less than 0.08°. For the screw thread pitch, major diameter, minor diameter, and pitch diameter parameter measurement, the deviation of the measurement results between the proposed method and the universal tool microscope (UTM) method is less than 10 μm. It fully proves the effectiveness and accuracy of the method in this paper and, at the same time, shows that the method has good real-time performance and high application significance, which lays a good foundation for the subsequent online thread measurement.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3