A Comparison of Multiple Odor Source Localization Algorithms

Author:

Staples Marshall12ORCID,Hugenholtz Chris1,Serrano-Ramirez Alex2,Barchyn Thomas E.1ORCID,Gao Mozhou1

Affiliation:

1. Centre for Smart Emissions Sensing Technologies, Department of Geography, University of Calgary, Calgary, AB T2N 1N4, Canada

2. Department of Mechanical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada

Abstract

There are two primary algorithms for autonomous multiple odor source localization (MOSL) in an environment with turbulent fluid flow: Independent Posteriors (IP) and Dempster–Shafer (DS) theory algorithms. Both of these algorithms use a form of occupancy grid mapping to map the probability that a given location is a source. They have potential applications to assist in locating emitting sources using mobile point sensors. However, the performance and limitations of these two algorithms is currently unknown, and a better understanding of their effectiveness under various conditions is required prior to application. To address this knowledge gap, we tested the response of both algorithms to different environmental and odor search parameters. The localization performance of the algorithms was measured using the earth mover’s distance. Results indicate that the IP algorithm outperformed the DS theory algorithm by minimizing source attribution in locations where there were no sources, while correctly identifying source locations. The DS theory algorithm also identified actual sources correctly but incorrectly attributed emissions to many locations where there were no sources. These results suggest that the IP algorithm offers a more appropriate approach for solving the MOSL problem in environments with turbulent fluid flow.

Funder

University of Calgary Global Research Initiative

New-Earth Space Technologies research theme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3