Impact of Xiaolangdi Reservoir on the Evolution of Water Infiltration Influence Zones of the Secondary Perched Reach of the Lower Yellow River

Author:

Zhang Min12ORCID,Ping Jianhua23,Zou Yafei23,Li He12ORCID,Mahwa Joshua124ORCID,Zhao Jichang5,Liu Jiaqi23

Affiliation:

1. College of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China

2. Geothermal and Ecological Geology Research Center, Zhengzhou University, Zhengzhou 450001, China

3. College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China

4. Department of Geology, College of Earth Science and Engineering, University of Dodoma, Dodoma P.O. Box 11090, Tanzania

5. China Institute of Geo-Environmental Monitoring, Beijing 100081, China

Abstract

Understanding the complex interplay between water management infrastructure and groundwater dynamics is crucial for sustainable resource utilization. This study investigates water infiltration dynamics in the secondary perched reach of the Yellow River after the operation of the Xiaolangdi Reservoir. The methodology included the application of the single-factor analysis of variance and water balance method, alongside a dual-structure, one-dimensional seepage model to simulate interactions within the system, while exploring characteristics of the groundwater flow system and the exploitation depth of below 100 m. Furthermore, we studied the influence zone range and alterations in river water infiltration in the secondary perched reach of the river following the operation of Xiaolangdi Reservoir. The results show that before the operation of the reservoir, the influence ranges of the north and south banks of the aboveground reach extended from 20.13 km to 20.48 km and 15.85 km to 16.13 km, respectively. Following the initiation of the reservoir, the river channel underwent scouring, leading to enhanced riverbed permeability. Additionally, the influence of long-term groundwater exploitation on both riverbanks extended the influence range of groundwater recharge within the secondary perched reach of the river. The influence zone of the north bank is now 23.41 km–26.74 km and the south bank 18.43 km–21.05 km. After years of shallow groundwater extraction, multiple groundwater depression cones emerged within the five major groundwater source areas on both sides of the river. Notably, deeper water levels (Zhengzhou to Kaifeng) have significantly decreased, with a drop of 42 m to 20 m to 15 m. This change in groundwater dynamics extended beyond the main channel of the river, creating a localized shallow groundwater field.

Funder

Research Startup Fund for the Academician Team of Zhengzhou University

high-level talents of Zhengzhou University

National Natural Science Foundation of China–Henan Talent Training Joint Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3