Abstract
Magnetohydrodynamic nanofluid technologies are emerging in several areas including pharmacology, medicine and lubrication (smart tribology). The present study discusses the heat transfer and entropy generation of magnetohydrodynamic (MHD) Ag-water nanofluid flow over a stretching sheet with the effect of nanoparticles shape. Three different geometries of nanoparticles—sphere, blade and lamina—are considered. The problem is modeled in the form of momentum, energy and entropy equations. The homotopy analysis method (HAM) is used to find the analytical solution of momentum, energy and entropy equations. The variations of velocity profile, temperature profile, Nusselt number and entropy generation with the influences of physical parameters are discussed in graphical form. The results show that the performance of lamina-shaped nanoparticles is better in temperature distribution, heat transfer and enhancement of the entropy generation.
Subject
General Physics and Astronomy
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献