The Influence of Seasonal Variability of Eutrophication Indicators on Carbon Dioxide and Methane Diffusive Emissions in the Largest Shallow Urban Lake in China

Author:

Ma Bingjie1,Wang Yang1,Jiang Ping1,Li Siyue1ORCID

Affiliation:

1. School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China

Abstract

Eutrophication is prevalent in urban lakes; however, a knowledge gap exists regarding eutrophication influences on carbon dynamics in these ecosystems. In the present study, we investigated the carbon dioxide (CO2) and methane (CH4) concentration and diffusion fluxes in Lake Tangxun (the largest shallow Chinese urban lake) in the autumn and winter of 2022 and spring and summer of 2023. We found that Lake Tangxun served as a source of GHGs, with average emission rates of 5.52 ± 12.16 mmol CO2 m−2 d−1 and 0.83 ± 2.81 mmol CH4 m−2 d−1, respectively. The partial pressure of dissolved CO2 (pCO2) (averaging 1321.39 ± 1614.63 μatm) and dissolved CH4 (dCH4) (averaging 4.29 ± 13.71 μmol L−1) exceeded saturation levels. Seasonal variability was observed in the pCO2 and dCH4 as well as CH4 fluxes, while the CO2 flux remained constant. The mean pCO2 and dCH4, as well as carbon emissions, were generally higher in summer and spring. pCO2 and dCH4 levels were significantly related to total nitrogen (TN), total phosphorus (TP), and ammonium-nitrogen (N-NH4+), and N-NH4+ was a main influencing factor of pCO2 and dCH4 in urban eutrophic lakes. The positive relationships of pCO2, dCH4 and trophic state index highlighted that eutrophication could elevate CO2 and CH4 emissions from the lake. This study highlights the fact that eutrophication can significantly increase carbon emissions in shallow urban lakes and that urban lakes are substantial contributors to the global carbon budget.

Funder

National Natural Science Foundation of China

Wuhan Institute of Technology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3