Author:
Jin Xin,Wang Hai,Feng Caixin
Abstract
In this work, we report the nonlinear carriers’ transport in n-doped monocrystalline silicone with millimeter-scale length. Ohm, effective trap filling, and Mott–Gurney regimes are distinguished from the current–voltage (I–V) curve. Two critical voltages are identified for the lower and upper limitations of an effective trap-filling regime. Meanwhile, the electrode spacing, temperature, and magnetic field dependence of the two critical voltages are demonstrated experimentally. In particular, we propose that the effective trap-filling process is irreversible under electric field. It is observed that the hysteresis of I–V curve initiates from the effective trap-filling regime and extends to the Mott–Gurney regime, forming the resistance-switching loop. In addition, the temperature dependence and the magnetic field dependence of the resistance-switching loop are reported. The above observations may shed light on dopants engineering on carrier dynamics in a space charge regime and further advance resistance-switching devices technology.
Funder
Beijing education committee
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献