An Indoor Room Classification System for Social Robots via Integration of CNN and ECOC

Author:

Othman Kamal,Rad Ahmad

Abstract

The ability to classify rooms in a home is one of many attributes that are desired for social robots. In this paper, we address the problem of indoor room classification via several convolutional neural network (CNN) architectures, i.e., VGG16, VGG19, & Inception V3. The main objective is to recognize five indoor classes (bathroom, bedroom, dining room, kitchen, and living room) from a Places dataset. We considered 11600 images per class and subsequently fine-tuned the networks. The simulation studies suggest that cleaning the disparate data produced much better results in all the examined CNN architectures. We report that VGG16 & VGG19 fine-tuned models with training on all layers produced the best validation accuracy, with 93.29% and 93.61% on clean data, respectively. We also propose and examine a combination model of CNN and a multi-binary classifier referred to as error correcting output code (ECOC) with the clean data. The highest validation accuracy of 15 binary classifiers reached up to 98.5%, where the average of all classifiers was 95.37%. CNN and CNN-ECOC, and an alternative form called CNN-ECOC Regression, were evaluated in real-time implementation on a NAO humanoid robot. The results show the superiority of the combination model of CNN and ECOC over the conventional CNN. The implications and the challenges of real-time experiments are also discussed in the paper.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methods and Applications of Space Understanding in Indoor Environment—A Decade Survey;Applied Sciences;2024-05-07

2. Cognitive Assistance for Dementia Patients;2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS);2024-01-28

3. Active Object Learning for intelligent social robots;Engineering Applications of Artificial Intelligence;2024-01

4. Automated Generation of Room Usage Semantics from Point Cloud Data;ISPRS International Journal of Geo-Information;2023-10-17

5. Cross-Domain Indoor Visual Place Recognition for Mobile Robot via Generalization Using Style Augmentation;Sensors;2023-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3