Author:
Liu Chang,Zhang Binzhen,Xue Chenyang,Zhang Wendong,Zhang Guojun,Cheng Yijun
Abstract
In this paper, we propose a multi-perspective ultrasound imaging technology with the cylindrical motion of four piezoelectric micromachined ultrasonic transducer (PMUT) rotatable linear arrays. The transducer is configured in a cross shape vertically on the circle with the length of the arrays parallel to the z axis, roughly perpendicular to the chest wall. The transducers surrounded the breast, which achieves non-invasive detection. The electric rotary table drives the PMUT to perform cylindrical scanning. A breast model with a 2 cm mass in the center and six 1-cm superficial masses were used for the experimental analysis. The detection was carried out in a water tank and the working temperature was constant at 32 °C. The breast volume data were acquired by rotating the probe 90° with a 2° interval, which were 256 × 180 A-scan lines. The optimized segmented dynamic focusing technology was used to improve the image quality and data reconstruction was performed. A total of 256 A-scan lines at a constant angle were recombined and 180 A-scan lines were recombined according to the nth element as a dataset, respectively. Combined with ultrasound imaging algorithms, multi-perspective ultrasound imaging was realized including vertical slices, horizontal slices and 3D imaging. The seven masses were detected and the absolute error of the size was approximately 1 mm where even the image of the injection pinhole could be seen. Furthermore, the breast boundary could be seen clearly from the chest wall to the nipple, so the location of the masses was easier to confirm. Therefore, the validity and feasibility of the data reconstruction method and imaging algorithm were verified. It will be beneficial for doctors to be able to comprehensively observe the pathological tissue.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献