Classifying Muscle States with One-Dimensional Radio-Frequency Signals from Single Element Ultrasound Transducers

Author:

Brausch LukasORCID,Hewener HolgerORCID,Lukowicz Paul

Abstract

The reliable assessment of muscle states, such as contracted muscles vs. non-contracted muscles or relaxed muscles vs. fatigue muscles, is crucial in many sports and rehabilitation scenarios, such as the assessment of therapeutic measures. The goal of this work was to deploy machine learning (ML) models based on one-dimensional (1-D) sonomyography (SMG) signals to facilitate low-cost and wearable ultrasound devices. One-dimensional SMG is a non-invasive technique using 1-D ultrasound radio-frequency signals to measure muscle states and has the advantage of being able to acquire information from deep soft tissue layers. To mimic real-life scenarios, we did not emphasize the acquisition of particularly distinct signals. The ML models exploited muscle contraction signals of eight volunteers and muscle fatigue signals of 21 volunteers. We evaluated them with different schemes on a variety of data types, such as unprocessed or processed raw signals and found that comparatively simple ML models, such as Support Vector Machines or Logistic Regression, yielded the best performance w.r.t. accuracy and evaluation time. We conclude that our framework for muscle contraction and muscle fatigue classifications is very well-suited to facilitate low-cost and wearable devices based on ML models using 1-D SMG.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3