Impact of Climate Change on the Energy and Comfort Performance of nZEB: A Case Study in Italy

Author:

Summa SerenaORCID,Tarabelli LucaORCID,Ulpiani Giulia,Di Perna Costanzo

Abstract

Climate change is posing a variety of challenges in the built realm. Among them is the change in future energy consumption and the potential decay of current energy efficient paradigms. Indeed, today’s near-zero Energy buildings (nZEBs) may lose their virtuosity in the near future. The objective of this study is to propose a methodology to evaluate the change in yearly performance between the present situation and future scenarios. Hourly dynamic simulations are performed on a residential nZEB located in Rome, built in compliance with the Italian legislation. We compare the current energy consumption with that expected in 2050, according to the two future projections described in the Fifth Assessment Report (AR5) by the Intergovernmental Panel on Climate Change (IPCC). Implications for thermal comfort are further investigated by assuming no heating and cooling system, and by tracking the free-floating operative temperature. Compared to the current weather conditions, the results reveal an average temperature increase of 3.4 °C and 3.9 °C under RCP4.5 and RCP8.5 scenarios, estimated through ERA-Interim/UrbClim. This comes at the expense of a 47.8% and 50.3% increase in terms of cooling energy needs, and a 129.5% and 185.8% decrease in terms of heating needs. The annual power consumption experiences an 18% increase under both scenarios due to (i) protracted activation of the air conditioning system and (ii) enhanced peak power requirements. A 6.2% and 5.1% decrease in the hours of adaptive comfort is determined under the RCP4.5 and RCP8.5′s 2050 scenarios out of the concerted action of temperature and solar gains. The results for a newly proposed combined index for long-term comfort assessments reveal a milder future penalty, owing to less pronounced excursions and milder daily temperature swings.

Publisher

MDPI AG

Subject

Atmospheric Science

Reference60 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3