iTRAQ-Based Quantitative Proteomics Reveals the Energy Metabolism Alterations Induced by Chlorogenic Acid in HepG2 Cells

Author:

Takahashi Shoko,Saito Kenji,Li Xuguang,Jia Huijuan,Kato Hisanori

Abstract

Epidemiological studies have suggested that coffee consumption is associated with a decrease in the risk of developing obesity and diabetes; however, the detailed mechanisms underlying these effects of coffee consumption remain poorly understood. In this study, we examined the effects of chlorogenic acid on energy metabolism in vitro. Hepatocellular carcinoma G2 (HepG2) cells were cultured in a medium containing chlorogenic acid. Chlorogenic acid increased the activity of mitochondrial enzymes, including citrate synthase, isocitrate dehydrogenase, and malate dehydrogenase (MDH), which are involved in the tricarboxylic acid (TCA) cycle. Proteome analysis using the isobaric tags for the relative and absolute quantitation (iTRAQ) method revealed the upregulation of proteins involved in the glycolytic system, electron transport system, and ATP synthesis in mitochondria. Therefore, we propose a notable mechanism whereby chlorogenic acid enhances energy metabolism, including the TCA cycle, glycolytic system, electron transport, and ATP synthesis. This mechanism provides important insights into understanding the beneficial effects of coffee consumption.

Funder

This research was partly funded by a grant from the All Japan Coffee Association.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3