A Modified Bayesian Framework for Multi-Sensor Target Tracking with Out-of-Sequence-Measurements

Author:

Shi YifangORCID,Qayyum Sundas,Memon Sufyan AliORCID,Khan Uzair,Imtiaz Junaid,Ullah IhsanORCID,Dancey Darren,Nawaz RaheelORCID

Abstract

Target detection and tracking is important in military as well as in civilian applications. In order to detect and track high-speed incoming threats, modern surveillance systems are equipped with multiple sensors to overcome the limitations of single-sensor based tracking systems. This research proposes the use of information from RADAR and Infrared sensors (IR) for tracking and estimating target state dynamics. A new technique is developed for information fusion of the two sensors in a way that enhances performance of the data association algorithm. The measurement acquisition and processing time of these sensors is not the same; consequently the fusion center measurements arrive out of sequence. To ensure the practicality of system, proposed algorithm compensates the Out of Sequence Measurements (OOSMs) in cluttered environment. This is achieved by a novel algorithm which incorporates a retrodiction based approach to compensate the effects of OOSMs in a modified Bayesian technique. The proposed modification includes a new gating strategy to fuse and select measurements from two sensors which originate from the same target. The state estimation performance is evaluated in terms of Root Mean Squared Error (RMSE) for both position and velocity, whereas, track retention statistics are evaluated to gauge the performance of the proposed tracking algorithm. The results clearly show that the proposed technique improves track retention and and false track discrimination (FTD).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3