Base Materials’ Influence on Fracture Resistance of Molars with MOD Cavities

Author:

Ciavoi Gabriela,Mărgărit Ruxandra,Todor LianaORCID,Bodnar Dana,Dina Magdalena Natalia,Tărlungeanu Daniela IoanaORCID,Cojocaru Denisa,Farcaşiu Cătălina,Andrei Oana CellaORCID

Abstract

The aim of this study was to compare fracture resistance of teeth presenting medium-sized mesial-occlusal-distal (MOD) cavities using different base materials. Thirty-six extracted molars were immersed for 48 h in saline solution (0.1% thymol at 4 °C) and divided into six groups. In group A, the molars were untouched, and in group B, cavities were prepared, but not filled. In group C, we used zinc polycarboxylate cement, in group D—conventional glass ionomer cement, in group E—resin modified glass ionomer cement, and in group F—flow composite. Fracture resistance was tested using a universal loading machine (Lloyd Instruments) with a maximum force of 5 kN and a crosshead speed of 1.0 mm/min; we used NEXYGEN Data Analysis Software and ANOVA Method (p < 0.05). The smallest load that determined the sample failure was 2780 N for Group A, 865 N for Group B, 1210 N for Group C, 1340 N for Group D, 1630 N for Group E and 1742 N for Group F. The highest loads were 3050 N (A), 1040 N (B), 1430 N (C), 1500 N (D), 1790 N (E), and 3320 N (F), the mean values being 2902 ± 114 N (A), 972 ± 65 N (B), 1339 ± 84 N (C), 1415 ± 67 N (D), 1712 ± 62 N (E), and 2334 ± 662 N (F). A p = 0.000195 shows a statistically significant difference between groups C, D, E and F. For medium sized mesial-occlusal-distal (MOD) cavities, the best base material regarding fracture resistance was flow composite, followed by glass ionomer modified with resin, conventional glass ionomer cement and zinc polycarboxylate cement. It can be concluded that light-cured base materials are a better option for the analyzed use case, one of the possible reasons being their compatibility with the final restoration material, also light-cured.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3