Oxidic 2D Materials

Author:

Dubnack Oliver,Müller Frank A.

Abstract

The possibility of producing stable thin films, only a few atomic layers thick, from a variety of materials beyond graphene has led to two-dimensional (2D) materials being studied intensively in recent years. By reducing the layer thickness and approaching the crystallographic monolayer limit, a variety of unexpected and technologically relevant property phenomena were observed, which also depend on the subsequent arrangement and possible combination of individual layers to form heterostructures. These properties can be specifically used for the development of multifunctional devices, meeting the requirements of the advancing miniaturization of modern manufacturing technologies and the associated need to stabilize physical states even below critical layer thicknesses of conventional materials in the fields of electronics, magnetism and energy conversion. Differences in the structure of potential two-dimensional materials result in decisive influences on possible growth methods and possibilities for subsequent transfer of the thin films. In this review, we focus on recent advances in the rapidly growing field of two-dimensional materials, highlighting those with oxidic crystal structure like perovskites, garnets and spinels. In addition to a selection of well-established growth techniques and approaches for thin film transfer, we evaluate in detail their application potential as free-standing monolayers, bilayers and multilayers in a wide range of advanced technological applications. Finally, we provide suggestions for future developments of this promising research field in consideration of current challenges regarding scalability and structural stability of ultra-thin films.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3