Preparation, Microstructure and Thermal Properties of Aligned Mesophase Pitch-Based Carbon Fiber Interface Materials by an Electrostatic Flocking Method

Author:

Li Baoliu12,Qin Yudan1,Gao Fang1,Zhu Chenyu1,Shan Changchun3,Guo Jianguang12,Dong Zhijun12,Li Xuanke12

Affiliation:

1. Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China

2. Hubei Province Pilot Base on Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China

3. Baowu Carbon Technology Co., Ltd., Shanghai 201999, China

Abstract

The mesophase pitch-based carbon fiber interface material (TIM) with a vertical array was prepared by using mesophase pitch-based short-cut fibers (MPCFs) and 3016 epoxy resin as raw materials and carbon nanotubes (CNTs) as additives through electrostatic flocking and resin pouring molding process. The microstructure and thermal properties of the interface were analyzed by using a scanning electron microscope (SEM), laser thermal conductivity and thermal infrared imaging methods. The results indicate that the plate spacing and fusing voltage have a significant impact on the orientation of the arrays formed by mesophase pitch-based carbon fibers. While the orientation of the carbon fiber array has a minimal impact on the shore hardness of TIM, it does have a direct influence on its thermal conductivity. At a flocking voltage of 20 kV and plate spacing of 12 cm, the interface material exhibited an optimal thermal conductivity of 24.47 W/(m·K), shore hardness of 42 A and carbon fiber filling rate of 6.30 wt%. By incorporating 2% carbon nanotubes (CNTs) into the epoxy matrix, the interface material achieves a thermal conductivity of 28.97 W/(m·K) at a flocking voltage of 30 kV and plate spacing of 10 cm. This represents a 52.1% increase in thermal conductivity compared to the material without TIM. The material achieves temperature uniformity within 10 s at the same heat source temperatures, which indicates a good application prospect in IC packaging and electronic heat dissipation.

Funder

Wuhan University of Science and Technology

Natural Science Foundation of Hubei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3