Geometrical Stabilities and Electronic Structures of Ru3 Clusters on Rutile TiO2 for Green Hydrogen Production

Author:

Alotaibi Moteb1ORCID

Affiliation:

1. Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

Abstract

In response to the vital requirement for renewable energy alternatives, this research delves into the complex interactions between ruthenium (Ru3) clusters and rutile titanium dioxide (TiO2) (110) interfaces, with the aim of enhancing photocatalytic water splitting processes to produce environmentally friendly hydrogen. As the world shifts away from traditional fossil fuels, this study utilizes the density functional theory (DFT) and the HSE06 hybrid functional to thoroughly assess the geometric and electronic properties of Ru3 clusters on rutile TiO2 (110) surfaces. Given TiO2’s renown role as a photocatalyst and its limitations in visible light absorption, this research investigates the potential of metals like Ru to serve as additional catalysts. The results indicate that the triangular Ru3 cluster exhibits exceptional stability and charge transfer effectiveness when loaded on rutile TiO2 (110). Under ideal adsorption scenarios, the cluster undergoes oxidation, leading to subsequent changes in the electronic configuration of TiO2. Further exploration into TiO2 surfaces with defects shows that Ru3 clusters influence the creation of oxygen vacancies, resulting in a greater stabilization of TiO2 and an increase in the energy required for creating oxygen vacancies. Moreover, the attachment of the Ru3 cluster and the creation of oxygen vacancies lead to the emergence of polaronic and hybrid states centered on specific titanium atoms. These states are vital for enhancing the photocatalytic performance of the material within the visible light spectrum. This DFT study provides essential insights into the role of Ru3 clusters as potential supplementary catalysts in TiO2-based photocatalytic systems, setting the stage for practical experiments and the development of highly efficient photocatalysts for sustainable hydrogen generation. The observed effects on electronic structures and oxygen vacancy generation underscore the intricate relationship between Ru3 clusters and TiO2 interfaces, offering a valuable direction for future research in the pursuit of clean and sustainable energy solutions.

Funder

Prince Sattam Bin Abdulaziz University

Publisher

MDPI AG

Reference50 articles.

1. Electrochemical Photolysis of Water at a Semiconductor Electrode;Fujishima;Nature,1972

2. Lewis, N.S., and Nocera, D.G. (2023, December 01). Powering the Planet: Chemical Challenges in Solar Energy Utilization. Available online: https://www.pnas.org/doi/10.1073/pnas.0603395103.

3. Sustainable hydrogen production;Turner;Science,2004

4. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals;Xiaobo;Science,2011

5. Nitrogen-doped SiO2/TiO2 core/shell nanoparticles as highly efficient visible light photocatalyst;Kim;Catal. Commun.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3