Developments in Atomistic and Nano Structure Evolution Mechanisms of Molten Slag Using Atomistic Simulation Methods

Author:

Jiang Chunhe1,Li Kejiang2,Bi Zhisheng2,Ma Shufang3,Zhang Jianliang24,Liu Bo5,Li Jiaqi5

Affiliation:

1. Technical Support Center for Prevention and Control of Disastrous Accidents in Metal Smelting, University of Science and Technology Beijing, Beijing 100083, China

2. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

3. Aetna Tianlong Tungsten Molybdenum Technology Co., Ltd., No. 11 Fenghui Middle Road, Haidian District, Beijing 100094, China

4. School of Chemical Engineering, The University of Queensland, Saint Lucia, QLD 4072, Australia

5. School of Advanced Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Molten slag has different properties depending on its composition. The relationship between its composition, structure, and properties has been the focus of attention in industrial manufacturing processes. This review describes the atomistic scale mechanisms by which oxides of different compositions affect the properties and structure of slag, and depicts the current state of research in the atomic simulation of molten slag. At present, the research on the macroscopic properties of molten slag mainly focuses on viscosity, free-running temperature, melting point, and desulphurization capacity. Regulating the composition has become the most direct and effective way to control slag properties. Analysis of the microevolution mechanism is the fundamental way to grasp the macroscopic properties. The microstructural evolution mechanism, especially at the atomic and nanoscale of molten slag, is reviewed from three aspects: basic oxides, acidic oxides, and amphoteric oxides. The evolution of macroscopic properties is analyzed in depth through the evolution of the atomic structure. Resolution of the macroscopic properties of molten slag by the atomic structure plays a crucial role in the development of fundamental theories of physicochemistry.

Funder

Young Elite Scientist Sponsorship Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3