Affiliation:
1. College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
Abstract
In this work, a CdS-nanoparticle-decorated WS2 nanosheet heterojunction was successfully prepared and first used to modify ITO electrodes for the construction of a novel photoelectrochemical sensor (CdS/WS2/ITO). The thin-film electrode was fabricated by combining electrophoretic deposition with successive ion layer adsorption and reaction techniques. The results indicated that the synthesized heterojunction nanomaterials displayed excellent photoelectrochemical performance which was much better than that of pristine CdS nanoparticles and 2D WS2 nanosheets. Owing to the formation of the surface heterojunction and the effective interfacial electric field, the enhanced separation of photogenerated electron–hole pairs led to a remarkable improvement in the photoelectrochemical activity of CdS/WS2/ITO. This heterojunction architecture can protect CdS against photocorrosion, resulting in a stable photocurrent. Based on the specific recognition between cysteine and CdS/WS2/ITO, through the specificity of Cd-S bonds, a visible-light-driven photoelectrochemical sensor was fabricated for cysteine detection. The novel photoelectrochemical biosensor exhibited outstanding analytical capabilities in detecting cysteine, with an extremely low detection limit of 5.29 nM and excellent selectivity. Hence, CdS-WS2 heterostructure nanocomposites are promising candidates as novel advanced photosensitive materials in the field of photoelectrochemical biosensing.
Funder
Large Instrument and Equipment Open Fund of Shandong Normal University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献