A Photoelectrochemical Sensor for the Sensitive Detection of Cysteine Based on Cadmium Sulfide/Tungsten Disulfide Nanocomposites

Author:

Wang Yan1,Liu Jiaxin1,Lin Fancheng1

Affiliation:

1. College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China

Abstract

In this work, a CdS-nanoparticle-decorated WS2 nanosheet heterojunction was successfully prepared and first used to modify ITO electrodes for the construction of a novel photoelectrochemical sensor (CdS/WS2/ITO). The thin-film electrode was fabricated by combining electrophoretic deposition with successive ion layer adsorption and reaction techniques. The results indicated that the synthesized heterojunction nanomaterials displayed excellent photoelectrochemical performance which was much better than that of pristine CdS nanoparticles and 2D WS2 nanosheets. Owing to the formation of the surface heterojunction and the effective interfacial electric field, the enhanced separation of photogenerated electron–hole pairs led to a remarkable improvement in the photoelectrochemical activity of CdS/WS2/ITO. This heterojunction architecture can protect CdS against photocorrosion, resulting in a stable photocurrent. Based on the specific recognition between cysteine and CdS/WS2/ITO, through the specificity of Cd-S bonds, a visible-light-driven photoelectrochemical sensor was fabricated for cysteine detection. The novel photoelectrochemical biosensor exhibited outstanding analytical capabilities in detecting cysteine, with an extremely low detection limit of 5.29 nM and excellent selectivity. Hence, CdS-WS2 heterostructure nanocomposites are promising candidates as novel advanced photosensitive materials in the field of photoelectrochemical biosensing.

Funder

Large Instrument and Equipment Open Fund of Shandong Normal University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3