Deep-Learning-Based Detection of Infants with Autism Spectrum Disorder Using Auto-Encoder Feature Representation

Author:

Lee Jung Hyuk,Lee Geon Woo,Bong Guiyoung,Yoo Hee Jeong,Kim Hong KookORCID

Abstract

Autism spectrum disorder (ASD) is a developmental disorder with a life-span disability. While diagnostic instruments have been developed and qualified based on the accuracy of the discrimination of children with ASD from typical development (TD) children, the stability of such procedures can be disrupted by limitations pertaining to time expenses and the subjectivity of clinicians. Consequently, automated diagnostic methods have been developed for acquiring objective measures of autism, and in various fields of research, vocal characteristics have not only been reported as distinctive characteristics by clinicians, but have also shown promising performance in several studies utilizing deep learning models based on the automated discrimination of children with ASD from children with TD. However, difficulties still exist in terms of the characteristics of the data, the complexity of the analysis, and the lack of arranged data caused by the low accessibility for diagnosis and the need to secure anonymity. In order to address these issues, we introduce a pre-trained feature extraction auto-encoder model and a joint optimization scheme, which can achieve robustness for widely distributed and unrefined data using a deep-learning-based method for the detection of autism that utilizes various models. By adopting this auto-encoder-based feature extraction and joint optimization in the extended version of the Geneva minimalistic acoustic parameter set (eGeMAPS) speech feature data set, we acquire improved performance in the detection of ASD in infants compared to the raw data set.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3