Multi-Objective Optimal Allocation of Wireless Bus Charging Stations Considering Costs and the Environmental Impact

Author:

Nahum Oren E.ORCID,Hadas YuvalORCID

Abstract

In recent years, due to environmental concerns, there has been an increasing desire to develop alternative solutions to traditional energy sources. Since transportation is a significant fossil-fuel consumer, the development of electric vehicles, especially buses, has the potential to reduce fossil-fuel use and thus provide a better living environment. The aim of the current work was to develop an optimal allocation model for designing a system-wide network of wireless bus charging stations. The main advantages of wireless charging are the need for a much smaller battery and the fact that the charging process may occur under both static and dynamic (in-motion) conditions. The suggested approach consisted of a multi-objective model that selected the locations for the charging stations while (a) minimizing the costs, (b) maximizing the environmental benefit, and (c) minimizing the number of charging stations. The problem was formulated as a multi-objective non-linear optimization model with both deterministic and stochastic variations. An efficient genetic algorithm was introduced to solve the problem. A test case was used to demonstrate the model; accordingly, the decision-maker was provided with a solution set from which the best fit solution could be selected.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3