Comparison of the Mineralogy of Iron Ore Sinters Using a Range of Techniques

Author:

Honeyands T.ORCID,Manuel J.,Matthews L.,O’Dea D.,Pinson D.,Leedham J.,Zhang G.,Li H.,Monaghan B.ORCID,Liu X.,Donskoi E.ORCID,Webster N. A. S.,Pownceby M. I.ORCID

Abstract

Many different approaches have been used in the past to characterise iron ore sinter mineralogy to predict sinter quality and elucidate the impacts of iron ore characteristics and process variables on the mechanisms of sintering. This paper compares the mineralogy of three sinter samples with binary basicities (mass ratio of CaO/SiO2) between 1.7 and 2.0. The measurement techniques used were optical image analysis and point counting (PC), quantitative X-ray diffraction (QXRD) and two different scanning electron microscopy systems, namely, Quantitative Evaluation of Materials by Scanning Electron Microscopy (QEMSCAN) and TESCAN Integrated Mineral Analyser (TIMA). Each technique has its advantages and disadvantages depending on the objectives of the measurement, with the quantification of crystalline phases, textural relationships between minerals and chemical compositions of the phases covered by the combined results. Some key differences were found between QXRD and the microscopy techniques. QXRD results imply that not all of the silico-ferrite of calcium and aluminium (SFCA types) are being identified on the basis of morphology in the microscopy results. The amorphous concentration determined by QXRD was higher than the glass content identified in the microscopy results, whereas the magnetite and total SFCA concentration was lower. The scanning electron microscopy techniques were able to provide chemical analysis of the phases; however, exact correspondence with textural types was not always possible and future work is required in this area, particularly for differentiation of SFCA and SFCA-I phases. The results from the various techniques are compared and the relationships between the measurement results are discussed.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3