Spodumene Flotation Mechanism

Author:

Filippov LevORCID,Farrokhpay SaeedORCID,Lyo Lichau,Filippova Inna

Abstract

Fine and coarse fractions of spodumene were obtained from a pegmatite ore and their flotation was investigated under different conditions. In particular, the optimum pH and collector dosage were studied. It was found that the best flotation performance occurs at pH 10 using 250 mg/L of sodium oleate. It was also observed that upon the addition of CaCl2, spodumene flotation recovery increases to about 90%. In addition, poor floatability was found for spodumene when Na2CO3 was used as a pH regulator (compared to NaOH).The zeta potential data confirmed the adsorption of oleate on the spodumene surface. It was found that activation of spodumene by calcium ions makes the surface charge less negative due to the adsorption of Ca2+ on the surface. The crystallographic properties of spodumene were analyzed. The adsorption of sodium oleate was attributed to the chemisorption of oleate to the exposed Al and Si sites generated after breakage of the Al–O and Si–O bonds on the mineral surface. It was observed that the {110} planes are the most favorable for the adsorption of oleate. The {110} plane is the weakest plane, and spodumene has the highest tendency to cleave along this plane. The XRD data revealed that fine spodumene particles have more {110} planes than the coarser fraction, which may explain why the former has better floatability.

Funder

Labex

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference16 articles.

1. Statista, Total Global Consumption of Lithium from 2008 to 2016https://www.statista.com

2. Supply and Demand of Lithium and Gallium;Rongguo,2016

3. Beneficiation of Lithium Ores;Bulatovic,2015

4. A novel approach for flotation recovery of spodumene, mica and feldspar from a lithium pegmatite ore

5. Flotation and adsorption of a new mixed anionic/cationic collector in the spodumene-feldspar system

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3