Consore: A Powerful Federated Data Mining Tool Driving a French Research Network to Accelerate Cancer Research

Author:

Guérin Julien1ORCID,Nahid Amine2,Tassy Louis3,Deloger Marc4,Bocquet François5,Thézenas Simon6ORCID,Desandes Emmanuel7ORCID,Le Deley Marie-Cécile8ORCID,Durando Xavier9ORCID,Jaffré Anne10,Es-Saad Ikram11,Crochet Hugo12ORCID,Le Morvan Marie3,Lion François4,Raimbourg Judith5,Khay Oussama7,Craynest Franck8,Giro Alexia9,Laizet Yec’han10,Bertaut Aurélie11ORCID,Joly Frederik2,Livartowski Alain1,Heudel Pierre12ORCID

Affiliation:

1. Institut Curie, 75005 Paris, France

2. Coexya, 69370 Saint-Didier-au-Mont-d’Or, France

3. Institut Paoli-Calmettes, 13009 Marseille, France

4. Gustave Roussy, 94805 Villejuif, France

5. Data Factory & Analytics Department, Institut de Cancérologie de l’Ouest, 44805 Nantes-Angers, France

6. Institut Régional du Cancer de Montpellier, 34090 Montpellier, France

7. Institut de Cancérologie de Lorraine, 54519 Nancy, France

8. Centre Oscar Lambret, 59000 Lille, France

9. Centre Jean Perrin, 63011 Clermont Ferrand, France

10. Institut Bergonié, 33076 Bordeaux, France

11. Centre Georges Francois Leclerc, 21000 Dijon, France

12. Centre Léon Bérard, 69008 Lyon, France

Abstract

Background: Real-world data (RWD) related to the health status and care of cancer patients reflect the ongoing medical practice, and their analysis yields essential real-world evidence. Advanced information technologies are vital for their collection, qualification, and reuse in research projects. Methods: UNICANCER, the French federation of comprehensive cancer centres, has innovated a unique research network: Consore. This potent federated tool enables the analysis of data from millions of cancer patients across eleven French hospitals. Results: Currently operational within eleven French cancer centres, Consore employs natural language processing to structure the therapeutic management data of approximately 1.3 million cancer patients. These data originate from their electronic medical records, encompassing about 65 million medical records. Thanks to the structured data, which are harmonized within a common data model, and its federated search tool, Consore can create patient cohorts based on patient or tumor characteristics, and treatment modalities. This ability to derive larger cohorts is particularly attractive when studying rare cancers. Conclusions: Consore serves as a tremendous data mining instrument that propels French cancer centres into the big data era. With its federated technical architecture and unique shared data model, Consore facilitates compliance with regulations and acceleration of cancer research projects.

Funder

Equipex

SiRIC

Publisher

MDPI AG

Reference30 articles.

1. Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I., and Bray, F. (2023, November 15). Global Cancer Observatory: Cancer Today. Lyon: International Agency for Research on Cancer. Available online: https://gco.iarc.fr/today.

2. Hallmarks of Cancer: New Dimensions;Hanahan;Cancer Discov.,2022

3. Importance of guidelines and networking for the management of rare gynecological cancers;Hanvic;Curr. Opin. Oncol.,2021

4. Use of an electronic medical record for the identification of research subjects with diabetes mellitus;Wilke;Clin. Med. Res.,2007

5. Caveats for the use of operational electronic health record data in comparative effectiveness research;Hersh;Med. Care,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3