A New Auto-Regressive Multi-Variable Modified Auto-Encoder for Multivariate Time-Series Prediction: A Case Study with Application to COVID-19 Pandemics

Author:

de Oliveira Emerson Vilar1ORCID,Aragão Dunfrey Pires1ORCID,Gonçalves Luiz Marcos Garcia1ORCID

Affiliation:

1. Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Av. Salgado Filho, 3000, Campus Universitário, Lagoa Nova, Natal 59078-970, RN, Brazil

Abstract

The SARS-CoV-2 global pandemic prompted governments, institutions, and researchers to investigate its impact, developing strategies based on general indicators to make the most precise predictions possible. Approaches based on epidemiological models were used but the outcomes demonstrated forecasting with uncertainty due to insufficient or missing data. Besides the lack of data, machine-learning models including random forest, support vector regression, LSTM, Auto-encoders, and traditional time-series models such as Prophet and ARIMA were employed in the task, achieving remarkable results with limited effectiveness. Some of these methodologies have precision constraints in dealing with multi-variable inputs, which are important for problems like pandemics that require short and long-term forecasting. Given the under-supply in this scenario, we propose a novel approach for time-series prediction based on stacking auto-encoder structures using three variations of the same model for the training step and weight adjustment to evaluate its forecasting performance. We conducted comparison experiments with previously published data on COVID-19 cases, deaths, temperature, humidity, and air quality index (AQI) in São Paulo City, Brazil. Additionally, we used the percentage of COVID-19 cases from the top ten affected countries worldwide until May 4th, 2020. The results show 80.7% and 10.3% decrease in RMSE to entire and test data over the distribution of 50 trial-trained models, respectively, compared to the first experiment comparison. Also, model type#3 achieved 4th better overall ranking performance, overcoming the NBEATS, Prophet, and Glounts time-series models in the second experiment comparison. This model shows promising forecast capacity and versatility across different input dataset lengths, making it a prominent forecasting model for time-series tasks.

Funder

Coordination for the Improvement of Higher Education Personnel

National Research Council

Publisher

MDPI AG

Reference44 articles.

1. ECDC (2023, March 01). Non-Pharmaceutical Interventions Against COVID-19, Available online: https://www.ecdc.europa.eu/en/covid-19/prevention-and-control/non-pharmaceutical-interventions.

2. Anastassopoulou, C., Russo, L., Tsakris, A., and Siettos, C. (2020). Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PLoS ONE, 15.

3. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia;Li;New Engl. J. Med.,2020

4. World Health Organization (2020). Novel Coronavirus (2019-nCoV): Situation Report, World Health Organization.

5. A SIR model assumption for the spread of COVID-19 in different communities;Cooper;Chaos Solitons Fractals,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3