Affiliation:
1. Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
2. PGY3 Internal Medicine-Pediatrics, School of Medicine, University of Illinois Chicago, Chicago, IL 60607, USA
Abstract
This study analyzes the prevalence of elevated blood lead levels (BLLs) in children across Chicagoland zip codes from 2019 to 2021, linking them to socioeconomic, environmental, and racial factors. Wilcoxon tests and generalized additive model (GAM) regressions identified economic hardship, reflected in per capita income and unemployment rates, as a significant contributor to increased lead poisoning (LP) rates. Additionally, LP rates correlate with the average age of buildings, particularly post the 1978 lead paint ban, illustrating policy impacts on health outcomes. The study further explores the novel area of land surface temperature (LST) effects on LP, finding that higher nighttime LST, indicative of urban heat island effects, correlates with increased LP. This finding gains additional significance in the context of anthropogenic climate change. When these factors are combined with the ongoing expansion of urban territories, a significant risk exists of escalating LP rates on a global scale. Racial disparity analysis revealed that Black and Hispanic/Latino populations face higher LP rates, primarily due to unemployment and older housing. The study underscores the necessity for targeted public health strategies to address these disparities, emphasizing the need for interventions that cater to the unique challenges of these at-risk communities.
Funder
U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research’s Urban Integrated Field Laboratories CROCUS