Research Progress on the Configurations and Performance of Reducing Pollution and Carbon Emissions by Bacterial–Algal Reactor

Author:

Lu Yunxia1,An Hao2,Li Chao34,Wu Xinming34,Liu Kang34

Affiliation:

1. Nanjing Municipal Academy of Ecological and Environment Protection Science, Nanjing 210013, China

2. China MCC5 Group Corp. Ltd., Chengdu 610063, China

3. College of Environment, Hohai University, Nanjing 210098, China

4. Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China

Abstract

Currently, the water ecological environment is severely polluted and traditional bioreactors have issues with high energy consumption and greenhouse gas emissions. However, a promising solution is the bacterial–algal reactor, which is a green bioreactor that can simultaneously treat sewage and fix CO2. The main configurations of bacterial–algal reactors, including several types, activated sludge, biofilm, batch biofilm–sludge reactor coupled with activated sludge method, and bacterial–algal open reactor, have been reviewed. The performance of these reactors in reducing pollutants and carbon emissions during wastewater treatment has been investigated. Additionally, the technical advantages of coupling a bacterial–algal symbiosis system with a conventional bioreactor have been analyzed. The interaction mechanism of the bacterial–algal system in various reactors has also been elaborated. The bacterial–algal reactor improves pollutant removal efficiency through assimilation and absorption of pollutants by microalgae, and reduces aeration by releasing oxygen through photosynthesis of microalgae. Finally, the existing problems in the practical application of bacterial–algal reactors have been summarized, and future research directions have been suggested, providing theoretical support for the future application of bacterial–algal reactors and directions for optimal design and development of bacterial–algal symbiotic reactors.

Funder

National Natural Science Foundation of China

Major Science and Technology Demonstration Projects of Carbon Peak and Carbon Neutra Technology Innovation in Jiangsu Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3