Exploring Urban Compactness and Greenhouse Gas Emissions in the Road Transport Sector: A Case Study of Big Cities in South Korea

Author:

Park Jiyong1ORCID,Jung Seunghyun1ORCID

Affiliation:

1. Smart Cities Research Cluster, Korea Institute of Civil Engineering and Building Technology, Ilsan, KS007, Goyang-si 10223, Republic of Korea

Abstract

This study examined the relationship between urban compactness and greenhouse gas (GHG) emissions in the road transport sector in South Korea, focusing on 84 cities, particularly 27 metropolitan areas with populations of approximately 500,000. We developed an urban compactness index (UCI) using Moran’s I, entropy, and the Gini coefficient, integrating city size into the analysis. Cities were categorized into five groups based on their size to analyze GHG emissions and regional variations in compactness comparatively. Our results revealed a significant inverse relationship between UCI and per capita road transport GHG emissions, which was more pronounced in larger cities. Specifically, cities with a population over 1 million displayed reduced per capita road transport GHG emissions in compact urban structures. In conclusion, these findings suggest that larger cities can effectively reduce per capita road transport GHG emissions through urban planning for compact development. Additionally, planners need to consider city size when analyzing the UCI and formulating urban planning strategies aimed at achieving carbon neutrality.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Reference47 articles.

1. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group 1 to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

2. UN Habitat (2022). Envisaging the Future of Cities, UN Habitat.

3. Lee, J., and Jung, S. (2023). Towards Carbon-Neutral Cities: Urban Classification Based on Physical Environment and Carbon Emission Characteristics. Land, 12.

4. Technical pathways to deep decarbonization in cities: Eight best practice case studies of transformational climate mitigation;Linton;Energy Res. Soc. Sci.,2022

5. How does local economic development in cities affect global GHG emissions?;Lee;Sustain. Cities Soc.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3