Affiliation:
1. China Electric Power Research Institute, Beijing 100192, China
2. School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China
Abstract
Energy storage has a flexible regulatory effect, which is important for improving the consumption of new energy and sustainable development. The remaining useful life (RUL) forecasting of energy storage batteries is of significance for improving the economic benefit and safety of energy storage power stations. However, the low accuracy of the current RUL forecasting method remains a problem, especially the limited research on forecasting errors. In this paper, a method for forecasting the RUL of energy storage batteries using empirical mode decomposition (EMD) to correct long short-term memory (LSTM) forecasting errors is proposed. Firstly, the RUL forecasting model of energy storage batteries based on LSTM neural networks is constructed. The forecasting error of the LSTM model is obtained and compared with the real RUL. Secondly, the EMD method is used to decompose the forecasting error into many components. The time series of EMD components are forecasted by different LSTM models. The forecasting values of different time series are added to determine the corrected forecasting error and improve the forecasting accuracy. Finally, a simulation analysis shows that the proposed method can effectively improve the forecasting effect of the RUL of energy storage batteries.
Funder
Open Fund Project of State Key Laboratory of New Energy and Energy Storage Operation Control