The Remaining Useful Life Forecasting Method of Energy Storage Batteries Using Empirical Mode Decomposition to Correct the Forecasting Error of the Long Short-Term Memory Model

Author:

Yan Tao1,Chen Jizhong1,Hui Dong1,Li Xiangjun1,Zhang Delong2ORCID

Affiliation:

1. China Electric Power Research Institute, Beijing 100192, China

2. School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China

Abstract

Energy storage has a flexible regulatory effect, which is important for improving the consumption of new energy and sustainable development. The remaining useful life (RUL) forecasting of energy storage batteries is of significance for improving the economic benefit and safety of energy storage power stations. However, the low accuracy of the current RUL forecasting method remains a problem, especially the limited research on forecasting errors. In this paper, a method for forecasting the RUL of energy storage batteries using empirical mode decomposition (EMD) to correct long short-term memory (LSTM) forecasting errors is proposed. Firstly, the RUL forecasting model of energy storage batteries based on LSTM neural networks is constructed. The forecasting error of the LSTM model is obtained and compared with the real RUL. Secondly, the EMD method is used to decompose the forecasting error into many components. The time series of EMD components are forecasted by different LSTM models. The forecasting values of different time series are added to determine the corrected forecasting error and improve the forecasting accuracy. Finally, a simulation analysis shows that the proposed method can effectively improve the forecasting effect of the RUL of energy storage batteries.

Funder

Open Fund Project of State Key Laboratory of New Energy and Energy Storage Operation Control

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3