Approach to Multi-Timescale Optimization for Distributed Energy Resources Clusters Considering Flexibility Margin

Author:

Li Bo,Ou Weichao,Chen Tingwei,Li Gaoming,Chen Yuanrui,Liu JunfengORCID

Abstract

The disordered access of massively distributed energy resources (DERs) brings great challenges to the operation stability of the power grid. This paper puts forward the concept of a cluster, which gathers DERs in large quantities, small capacities, dispersion and disorder to form a large, centralized and orderly whole, namely cluster, with certain incentive measures. In this paper, a multi-timescale optimization method of day-ahead planning and intra-day rolling optimization is proposed according to the characteristics of aggregated clusters and the requirements of China’s power grid architecture. Specifically, the day ahead model is proposed in two steps: the first step is to establish an optimization model with the goal of optimal fitting the target load curve and maximizing the utilization of DERs; The second step is to establish a potential game model considering the reasonable distribution of cluster benefits. Taking the minimum percentage of output correction of each cluster as the objective, considering the deviation of load forecasting and the deviation of day ahead instruction execution, an intra-day rolling optimization model is established. Finally, the application scenario of cluster participation in power grid auxiliary peak shaving is simulated and verified. The simulation results show that the cluster collaborative optimization method proposed in this paper can effectively reduce the load peak valley difference and maximize the use of cluster resources. The optimization tasks can be reasonably allocated while ensuring the stable and reliable operation of the power grid.

Funder

Science and Technology Project of China South- ern Power Grid

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference24 articles.

1. National Energy Administration (2022, January 29). The 14th Five-Year Plan for Modern Energy System, Available online: http://zfxxgk.nea.gov.cn/2022-01/29/c_1310524241.htm.

2. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future;Zhang;Proc. CSEE,2022

3. Business model and key technology of virtual power plant oriented for new power system;Ge;Autom. Electr. Power Syst.,2022

4. Carbon peak and carbon neutrality path for China’s power industry;Shu;Strateg. Study CAE,2021

5. Zhao, S. (2020). Research on Intergration Mechanism and Key Technologies of Renewable Energy Considering Demand Response. [Ph.D. Thesis, Southeast University].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3