A Numerical Analysis of the Thermal Energy Storage Based on Porous Gyroid Structure Filled with Sodium Acetate Trihydrate

Author:

Beer Martin1ORCID,Kudelas Dušan1ORCID,Rybár Radim1

Affiliation:

1. Faculty of Mining, Ecology, Process Technologies and Geotechnology, Institute of Earth Sources, Technical University of Košice, Letná 9, 040 01 Košice, Slovakia

Abstract

The present paper deals with the evaluation of the unique design of the thermal energy storage unit and its impact on the overall heat exchange efficiency. The proposed thermal energy storage unit consists of a gyroid thermally conductive structure, the voids of which are filled with sodium acetate trihydrate. The presented concept is focused on the use in the field of heavy machinery, where it is possible to accumulate and re-use waste heat from internal combustion engines from the cooling liquid or lubricating products. The evaluation of designs took place through numerical simulations on three models characterized by different levels of the introduction of the gyroid structure into the design. From the design point of view, the gyroid structure was considered as an object produced by additive manufacturing methods from a thermally conductive filament based on a thermoplastic polymer, which enables considerable simplification of production compared to the use of suitable anti-corrosion metals. A comparison of the essential thermophysical parameters in the process of charging and discharging of the proposed thermal energy storage unit quantified a significant increase in the rate of the charging, respectively, of the discharging process, manifested by a rapid increase in the temperature of the sodium acetate trihydrate volume, respectively, of the output temperature of the heat transfer medium that removes the accumulated heat for further use.

Funder

Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference40 articles.

1. State of the art of thermal storage for demand-side management;Arteconi;Appl. Energy,2012

2. How to support sustainable energy consumption in households?;Streimikiene;Acta Montan. Slovaca,2022

3. Assessment of energy storage for energy strategies development on a regional scale;Rabe;Acta Montan. Slovaca,2022

4. Review on solar thermal energy storage technologies and their geometrical configurations;Suresh;Int. J. Energy Res.,2020

5. A comprehensive review on current advances of thermal energy storage and its applications;Chavan;Alex. Eng. J.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3