Seawater Intrusion Risk and Prevention Technology of Coastal and Large-Span Underground Oil Storage Cavern

Author:

He Shengquan,Song Dazhao,Yang Lianzhi,Miao Xiaomeng,Liang Jiuzheng,He Xueqiu,Cao Biao,Zhao YingjieORCID,Chen Tuo,Zhong Wei,Zhong Taoping

Abstract

The presence of a high concentration of Cl− in saltwater will erode the structure and facilities, reducing the stability and service life of the underground oil storage cavern. In order to reduce the risk of seawater intrusion, this paper studies the risk and prevention technology of seawater intrusion based on a case study of a coastal and large-span underground oil storage cavern. A refined three-dimensional hydrogeological model that comprehensively considers permeability coefficient partitions, faults, and fractured zones are constructed. The seepage fields and seawater intrusion risks of the reservoir site in its natural state, during construction, and during operation are examined, respectively. The study quantifies the water inflow and optimizes the seawater intrusion prevention technology. The results indicate that there is no risk of seawater incursion into the cavern under natural conditions. The water inflows after excavating the top, middle, and bottom sections of the main cavern are predicted to be 6797 m3/day, 6895 m3/day, and 6767 m3/day, respectively. During the excavation period, the water supply from the water curtain system is lower than the water inflow of the cavern, providing the maximum water curtain injection of 6039 m3/day. The water level in the reservoir area decreased obviously in the excavation period, but the water flow direction is from the cavern to the sea. Additionally, the concentration of Cl− in the cavern area is less than 7 mol/m3; hereby, there are no seawater intrusion risks. When only the horizontal water curtain system is deployed, seawater intrusion occurs after 18 years of cavern operation. The concentration of Cl− in the southeast of the cavern group exceeds 50 mol/m3 in 50 years, reaching moderate corrosion and serious seawater intrusion. In addition to the horizontal curtain above the cavern, a vertical water curtain system could be added on the southeast side, with a borehole spacing of 10 m and extending to 30 m below the cavern group. This scheme can effectively reduce seawater intrusion risk and extend the service life of the cavern. The findings of this research can be applied as guidelines for underground oil storage caverns in coastal areas to tackle seawater intrusion problems.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3