Abstract
With the intensive integration of photovoltaic (PV) sources into the low-voltage distribution networks (LVDN), the nodal voltage limit violations and fluctuation problem cause concerns on the safety operation of a power system. The intermittent, stochastic, and fluctuating characteristics of PV output power leads to the frequent and fast fluctuation of nodal voltages. To address the voltage limit violation and fluctuation problem, this paper proposes a distributed nodal voltage regulation method based on photovoltaic reactive power and on-load tap changer transformers (OLTC). Using the local Q/V (Volt/Var) feedback controller derived from the grid sensitivity matrix, the voltage magnitude information is adopted to adjust the output of PV systems. Moreover, in order to share the burden of voltage regulation among distributed PV systems, a weighted distributed reactive power sharing algorithm is designed to achieve the voltage regulation according to the rated reactive power. Theoretical analysis is provided to show the convergence of the proposed algorithm. Additionally, the coordination strategy for distributed PV systems and OLTC is provided to reduce the reactive power outputs of PV systems. Five simulation case studies are designed to show the effectiveness of the proposed voltage regulation strategy, where the voltage regulation and proportional reactive power sharing can be achieved simultaneously.
Funder
Electric Power Research Institute of State Grid Hebei Electric Power Company
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献